35 resultados para Thermogravimetry

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl bis-2,4-pentanedionate, a precursor used for chemical vapour deposition of vanadium oxides. Using a modification of the Langmuir equation, the partial pressure of these materials at different total pressures is also determined as a function of temperature. Such data can be useful for the deposition of multi-metal oxide thin films or doped thin films by chemical vapour deposition (CVD).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of bimetallic acetylacetonate (acac) complexes, AlxCr1-x(acac)(3), 0 <= x <= 1, have been synthesized for application as precursors for the CVD Of Substituted oxides, such as (AlxCr1-x)(2)O-3. Detailed thermal analysis has been carried out on these complexes, which are solids that begin subliming at low temperatures, followed by melting, and evaporation from the melt. By applying the Langmuir equation to differential thermogravimetry data, the vapour pressure of these complexes is estimated. From these vapour pressure data, the distinctly different enthalpies of sublimation and evaporation are calculated, using the Clausius-Clapeyron equation. Such a determination of both the enthalpies of sublimation and evaporation of complexes, which sublime and melt congruently, does not appear to have been reported in the literature to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ammonium perchlorate (AP) has been coated with polystyrene (PS), cellulose acetate (CA), Novolak resin and polymethylmethacrylate (PMMA) by a solvent/nonsolvent method which makes use of the coacervation principle. The effect of polymer coating on AP decomposition has been studied using thermogravimetry (TG) and differential thermal analysis (DTA). Polymer coating results in the desensitization of AP decomposition. The observed effect has been attributed to the thermophysical and thermochemical properties of the polymer used for coating. The effect of polystyrene coating on thermal decomposition of aluminium perchlorate trihydrazinate and ammonium nitrate as well as on the combustion of AP-CTPB composite propellants has been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel solid-solution precursor method for the preparation of fine-particle cobaltites at low temperatures has been described. The precursors, hydrazinium metal hydrazine carboxylate hydrates, N2H5M1/3Co2/3(N2H3COO)3 · H2O, where M = Mg, Mn, Fe, Co, Ni, and Zn, decompose in air <250°C to yield corresponding metal cobaltites, MCo2O4. Formation of cobaltites has been confirmed by thermogravimetry (TG) weight loss, IR, and X-ray diffraction. Combustion of the precursor in air yields fine-particle cobaltites with surface areas in the range of 12–115 m2g−1 and particle sizes of 1–40 μm. Low decomposition temperatures of the precursors accompanied by the evolution of large amounts of gases appear to control the particle size of the cobaltites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the burning rates of compressed mixtures of ammonium perchlorate (AP) and trimethylammonium perchlorate (TMAP) has been carried out at ambient pressure. The overall increase in the linear burning rate, showing a maximum at a composition having 80% TMAP, has been discussed in terms of factors such as stoichiometry, presence of faster burning component, and eutectic melt formation. The thermal decomposition studies of the mixtures, using isothermal thermogravimetry and differential thermal analysis techniques, indicate the possibility of eutectic melt formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polystyrene peroxide has been synthesized and its decomposition has been studied by thermogravimetry and differential thermal analysis. Polystyrene peroxide has been found to decompose exothermically at about 110°C. The activation energy for the decomposition was estimated to be 30 kcal/mole both by the Jacobs and Kureishy method and by fitting the α versus time curves to the first-order kinetic equation. This suggests that the rate-controlling step in the decomposition of polystyrene peroxide is cleavage of the O---O bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrazinium acetate, metavanadate, sulfite, sulphamate and thiocyanate have been prepared by the reaction of corresponding ammonium salts with hydrazine hydrate. The compounds were characterised by chemical analysis and infrared spectra. Thermal behaviour of these hydrazinium derivatives have been investigated using thermogravimetry and differential thermal analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The salicylato complex of cobalt was synthesized and its structure established to be [Co(sal)2] · 4 H2O, where, sal =, from elemental analysis, IR spectroscopy, magnetic susceptibility, cryoscopy and conductivity. The X-ray diffractogram of the complex has been given. Thermal decomposition has been studied in air by thermogravimetry (TG), differential thermal analysis and differential scanning calorimetry. TG shows three main steps of decomposition. The intermediates formed at various stages were collected and analysed. From the TG results and chemical analysis of the intermediates, a mechanism has been proposed for the thermal decomposition of the complex, leading to the oxide formation in the final stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metl oxalate hydrazinates MC2O4·2 N2H4 where M=Mg, Mn, Fe, Co, Ni, Cu, Zn and Cd have been prepared and characterised by chemical analysis and infrared spectra. Thermal reactivity and decomposition of these oxalato complexes have been studied using thermogravimetry and differential thermal analysis. Hydrazinates of Mn, Fe, Co, Ni and Cu oxalates exhibit autocatalytic decomposition behaviour whereas the others do not. This phenomenon can be attributed to the presence of a bridged hydrazine as well as the thermal stability of the anhydrous metal oxalates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis of hydrazinium metal sulphates, (N2H5)2 M(SO4)-I, and their hydrazinates, (N2H5)2−M(SO4)23N2H4−II, whereM=Fe, Co and Ni have been investigated using thermogravimetry and differential thermal analysis. Type II compounds on heating decompose through an intermediate I and metal suphlate to the respective metal oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal behaviour of ammonium perchlorate-aluminium composites is studied using differential thermal analysis, thermogravimetry and differential scanning calorimetry. Electrical resistivity studies throw light on the mechanism of ammonium perchlorate decomposition at different aluminium contents. The differences observed in burning behaviour by earlier authors is explained in terms of porosity and thermal conductivity of the composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal oxalate hydrazinates MC2O4·2 N2H4 where M=Mg, Mn, Fe, Co, Ni, Cu, Zn and Cd have been prepared and characterised by chemical analysis and infrared spectra. Thermal reactivity and decomposition of these oxalato complexes have been studied using thermogravimetry and differential thermal analysis. Hydrazinates of Mn, Fe, Co, Ni and Cu oxalates exhibit autocatalytic decomposition behaviour whereas the others do not. This phenomenon can be attributed to the presence of a bridged hydrazine as well as the thermal stability of the anhydrous metal oxalates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition of ammonium perchlorate based solid composite propellant using carboxyl terminated polybutadiene as binder has been studied employing thermogravimetry and differential thermal analysis techniques. The thermal decomposition characteristics of the propellant have been found to be quite similar to those of pure ammonium perchlorate with activation energy, 32 Kcal/mole and 60 Kcal/mole respectively in the low and high temperature regions. The effect of the sample size and shape on the thermal decomposition has also been evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDIES on potassium perchlorate/polystyrene (KP/PS) propellant systems have been carried out by using such techniques as thermogravimetry (TG), differential thermal analysis (DTA), and mass spectrometry (MS). It has been found that the thermal decomposition (TD) behavior of the KP/PS propellant is similar to that of the AP/PS propellant studied earlier.! It has also been observed that the TD of KP in the melt has a correlation with the burning rate (r) of KP/PS propellant at atmospheric pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various carbon nanostructures (CNs) have been prepared by a simple deposition technique based on the pyrolysis of a new carbon source material tetrahydrofuran (THF) mixed with ferrocene using quartz tube reactor in the temperature range 700-1100 degrees C. A detailed study of how the synthesis parameter such as growth temperature affects the morphology of the carbon nanostructures is presented. The obtained CNs are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), electron dispersive scattering (EDS)thermogravimetry analysis (TGA), Raman and transmission electron microscope (TEM). It is observed that at 700 degrees C. normal CNTs are formed. Iron filled multi-walled carbon nanotubes (MWCNTs) and carbon nanoribbons (CNRs) are formed at 950 degrees C. Magnetic characterization of iron filled MWCNTs and CNRs studied at 300 K by superconducting quantum interference device (SQUID) reveals that these nanostructures have an enhanced coercivity (Hc = 1049 Oe) higher than that of bulk Fe. The large shape anisotropy of MWCNTs, which act on the encapsulated material (Fe), is attributed for the contribution of the higher coercivity. Coiled carbon nanotubes (CCNTs) were obtained as main products in large quantities at temperature 1100 degrees C.